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TURBULENT FREE SURFACE FLOW SIMULATION USING 
A MULTILAYER MODEL 

C. J. LA1 AND C. W. YEN 
Department of Hydraulic and Ocean Engineering, Cheng-Kung University, Tainan, Taiwan, ROC. 

SUMMARY 

Based on the steady hydrodynamic equations, a multilayer (ML) model has been formulated for simulating 
turbulent flow in open channels. The model is imposed on a general curvilinear co-ordinate system with 
non-staggered finite volume discretization. The turbulent quantities in the model are described by the 
layer-averaged k--E turbulence model with standard coefficients. Assuming a vertical hydrostatic pressure 
distribution, a depth correction scheme, originating in the Rhie and Chow approach for confined flows, is 
incorporated into the SIMPLE procedure to compute the water surface. 

Using the multilayer model, flows in a 180" channel bend, near a groin, and in straight open channels are 
computed. The results are compared with experimental data and with calculations of a depth-averaged 
model (DAV) having three-dimensional effect corrections. The comparisons show that the predictions of the 
ML model on mean flow values are in good agreement with the available data and are better than those of 
the DAV model. The vertical distribution of the turbulent energy dissipation rate is also shown to agree well 
with the open-channel measurements. 
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1. INTRODUCTION 

Turbulent flows in hydraulic engineering applications of various length scales have many forms. 
Several numerical models using rectangular or curvilinear grids have been developed 1-4 to 
simulate these flows. The depth-averaged k-E turbulence model is the most widely used model in 
describing the turbulent properties of the flows. For small or laboratory-scale channels, the 
depth-averaged k--E turbulence model proposed by Rastogi and Rodis had been used by Keller 
and Rodi,6 McGuirk and R ~ d i , ~  Lai et al.' and Tingsanchali and Maheswaran' to compute flow 
in compound channel, channel flow with a side discharge and channel flow near a groin. For flow 
in large or practical scales, Raithby et a/." used orthogonal curvilinear co-ordinates in the 
horizontal direction, and a-co-ordinates in the vertical direction, to predict thermal discharge in 
a coastal region. The flows predicted in these studies are generally good, except when recirculat- 
ing patterns exist. An ASCE review committee' recognized that the recirculating zone can be 
underestimated due to the insufficient capability of the standard k--E turbulence model. 

To improve the accuracy of the two-dimensional (2D) models in predicting recirculating flows, 
several correction procedures have been used-the correction for the streamline curvature,", l 2  

the correction for the friction coefficient of the three-dimensional (3D) effect,' and the modifica- 
tion of the eddying term in the energy dissipation equation,' etc. Unfortunately, these modifica- 
tions require several empirical constants, which depend on flow types and must be determined by 
experimenting or calibrating. 
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Since recirculating flow is three-dimensional in nature, intuitively one would think that a full 
3D model can give the best prediction. However, a full 3D model requires the determination of 
the free surface from kinematic and dynamic boundary conditions and requires more sophisti- 
cated computation. To reduce this computational difficulty, some investigators’4p16 used the 
‘rigid-lid’ assumption on the free surface, but others, such as Lardier and Cekirge,17 and Shimizu 
et aE.,l coupled the shallow-water and full 3D models to obtain the free-surface elevation and the 
3D flow field. In these 3D hydrodynamic model, the eddy viscosity within the governing 
equations was estimated with empirical  profile^.'^,^^ Since these profiles were not universal, 
different empirical vertical eddy viscosity profiles produce different numerical results. 

Attempting to improve the prediction of flows, we have developed a hydrodynamic multi- 
layered turbulent flow (ML) model. This model uses the SIMPLE algorithm,21 incorporates the 
k--E turbulence model, specifies the bed and wall shear stresses with wall function and relieves 
the ‘rigid-lid’ assumption on the free surface. For versatile applications, the model has used the 
boundary-fitted co-ordinate system with a non-staggered grid arrangement. The use of the 
turbulence model in multilayer form and the modification of the pressure correction procedure of 
Rhie and Chowz2 for the water surface correction are the contributions of the present paper. The 
formulation and solution algorithm are discussed in the next two sections. The model is validated 
by comparing the computed mean flow and turbulent quantities with those obtained from the 
laboratory experiments. 

2. GOVERNING EQUATIONS 

Multilayer mean flow equations 

The following assumptions are made in the present model: 

(1) The mean flow field is in steady state. 
(2) The vertical pressure distributian is hydrostatic. 
(3) The turbulent Reynolds stresses can be approximated by the Boussinesq eddy-viscosity 

(4) The vertical distribution of the flow quantities within a layer is nearly uniform. 
(5) Layer interfaces, except the free surface, are parallel to the mean water level. 

By integrating the 3D continuity and the Reynolds equations over the thickness of each layer 
shown in Figure 1, the layer-averaged mean flow equations for steady-state incompressible flow 
are derived as 

concept. 

(3) 

(4) 

a a a a a 
- ( p h W 1 + -  (phuv), = - (hfxx)l  +- ( h f x y ) l - p , g h l -  H + s,, ax aY ax  aY ax 

a a a a a 
- ( p h W 1 + -  (phvv), = - (ht,,), +- (hz,,), - ptgh,-  H + s,. 
ax aY ax aY aY 

Equations (1) and (2) are the continuity equations for the entire channel and each layer. 
Equations (3) and (4) are the x (longitudinal) and y (transverse) momentum equations for each 
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Figure 1. Multilayer open-channel flow system 

layer, in which u and v are the horizontal layer-averaged mean velocities and w is the vertical 
velocity specified at the interface of each layer. The subscripts I ,  t, b, denote the index of a layer, 
the top and the bottom surfaces of the layer, respectively. Using these notations, a depth-averaged 
model is a single-layer model, and the layer surface velocities at t and b are zero. 

The eddy viscosity pt and the turbulent stress z,,, z,,, at each layer are determined from the k-E 
turbulence model. The present layer-averaged k-s turbulence model is based on the depth- 
averaged form of Rostogi and R ~ d i , ~  with one extra source term added to consider the convective 
and diffusive effects tht exist between the layers. According to the Boussinesq's concept, the 
turbulent shear stress can be expressed in Cartesian tensor notation as 

The turbulent viscosity pt is expressed in terms of the layer-averaged turbulent kinetic energy 
k and dissipation rate E as 

C ,  PP L = 7 .  

So the source terms in equations (4) and (5) are written as 

and 

The turbulence quantities k and E for each layer are determined from the solution of the following 
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transport equations: 

and 

where 

and 

In equations (9) and (lo), G is the production term for turbulent kinetic energy of each layer 
can be expressed as 

In equation (lo), Pk, and PkE are source terms which absorb the effects of the non-uniform Vertical 
distributions of k and E. At the bottom layer ( E  = 1) or for the depth-averaged model (Imax = I), these 
two terms can be expressed as? 

and 

where Cf and Ub* are the friction coefficient and friction velocity at channel bed, respectively. In 
the present multilayer model the values of Pk" and PkE at each layer are set to zero, and the Wall 
function expression is used at the lowest layer. The values of the empirical constants are: 
C,  = 0.09, C1 = 1.43, C2 = 1.92, uk= 1.0 and uE = 1.3. All the quantities are specified at the middle 
depth of the layer. The quantity at interface is linearly interpolated from those at adjoining upper 
and lower layers. 

Boundary conditions 

The boundary conditions are required at 'upstream and downstream locations, at the bottom 
and at the free surface. At the upstream location the fully developed values for the velocities, k and 
E are specified. At the downstream location a fully developed zero-gradient condition is used. 

At the side walls and channel bed, non-penetrating conditions are applied. Also, the wall 
function of Launder and SpaldingZ3 is employed to link the velocities at the first grid point or at 
the bottom layer to the boundary shear stresses. The values of Eand E near the boundaries are 
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also calculated by applying the empirical formulas proposed by Rastogi and Rodi. For example, 
the values of R and E at the centre of the first grid can be calculated from 

where yw is the distance from the wall, K is the von Karman constant and U p  is the estimated 
velocity parallel to the wall. E is related to the boundary roughness and is equal to 9.0 for the 
smooth wall. 

At the free surface (the upper face of the top layer), mean velocities u, v and turbulent kinetic 
energy k are extrapolated from the layers near the surface. Velocity normal to the free surface is 
set to zero and E is obtained from the expression given by Noat and Rodi” as 

where yo is called the ‘virtual origin’ and s represents the value at the free surface. Based on the 
evaluation of Noat and Rodi, a value of 0.07 times the local depth H can be used to represent yo. 
The water depth near the solid wall is extrapolated from the depth at the nearby grid points. 

3. SOLUTION ALGORITHM 

Transformation of governing equations 

Omitting the subscript I denoting the layer number and the overbar, denoting the layer- 
averaged values, the transport equations of the variables for each layer given in the last section 
can be rewritten in a general form as 

where 4 = 1, u, v, k or E and r, is the effective diffusion coefficient. R ,  is the source term in 
equations (3), (4), (9) and (10). 

By introducing a curvilinear co-ordinate system ( 5 ,  q) and the relationship between the physical 
and the transformed planes shown in Figure 2, equation (18) is transformed into ( 5 , ~ )  co- 
ordinates and written as 

where the source term S ,  is defined as 

The contravariant velocity components U and V are related to the Cartesian velocity compo- 
nents u and v by the Jacobian J by 

(21) 
1 
J 

u =- (uy, - ox,) 
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1 
J 

v =  - ( - u y s  + VX<). 
Jacobian J and the metric tensor components g l l ,  g", gZ1 and gzZ are defined as 

J = X S Y ,  - X S Y S ?  

1 1 2 2  
9" = j z  (4 +Y," 1, gZ2 =J' (xs +YS 1 

and 
g'2 = g*' = -J' 1 (xy x, + Y< Y,) 

Numerical discretization 

The discretized form of the governing equations for each layer is obtained by integrating 4 over 
a control volume of a typical grid point P (see Figure 2), using the adjacent grid points to the 
north(N), south(S), east(E) and west(W) and assuming a stepwise variation for variable 4 between 
point P and the adjacent grid points. To find the flux at the faces of control volume, the 
power-law scheme2' is adopted. The discretized equations are arranged as follows: 

Equation of continuity (for each layer): 

(JphUA~frq),-( JphU All)w+(JphvAe),-(JphvA~), +(JpwASA~frq)t-( J ~ w A ~  A~frq)b=O (26) 

Equation for the overall depth: 
I,,, 

C C(JphU A~frq),-(J~hUA~frq)~+ ( J p h V A t ) , - ( J p h v A 5 ) ,  3 =O. (27) 
1 = 1  

s\ 
' X  

(a) 

' f  
(b) 

Figure 2. Non-staggered control volume: (a) physical and (b) computational domains 
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The equations of motion in the x and y directions for each layer are written as 

1 A:un + S" + h(B"H, + C"H,,) 1 1 
up=- [ 

A: n = E , W , N , S  

and 

respectively, where 

and 

1013 

(28) 

In equations (28) and (29) up and up are the layer-averaged velocities and S" and S" are the source 
terms, which exclude the pressure gradients, at point P in the x and y directions, respectively. The 
'n' summations are taken over the adjacent grid points (E, W, N and S). 

Water depth correction equation 

The velocity components u and v can be solved from the momentum equations for each layer. 
In general, u and u are the estimated values and do not satisfy mass conservation unless both the 
local water depth and the thickness of each layer are correct in the physical domain. The local 
water depth correction H' and the layer thickness correction h' are introduced to satisfy both the 
momentum and the continuity equations. The correct flow field (u, u, h, H )  for each layer are 
obtained from the current estimates of u*, u*, h* and H *  by the addition of the correction values 
(u', u', h', H ' )  as 

u = u* + u', 

h=h*+h', H = H * + H ' .  (32) 

u =  u* + u', 

If u* is the layer-averaged velocity based on H *  and h*, then it is written as 

[ 1 Aiu,*+S" + h * ( B " H ; " + C V q ) .  (33) 1 u* =- 
P A: n = E , W , N , S  

Substituting equation (33) into equation (28), the velocity correction ub is obtained as 

n = E , W , N , S  

The first term on the right-hand side of this equation may be dropped without affecting the 
converged solution.'l h' is set to zero for each layer except the top layer I,,, which is adjacent to 
the free surface. Thus, the velocity correction equation for u can be written as 

U=u*+h*(B"H;+C"H;) .  (35) 

u= u* + h*(B"Hk + C"HQ).  (36) 

A similar equation can be written for u: 
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Hence, the corrections to the contravariant velocity components U and V can be obtained by 
substituting equations (35) and (36) into equations (21) and (22), which yields 

u= U* + h*(B"y,-B"x,)H;+ h*(C"y,- C"x,)H:, 

v= v* + h*(C"X< - C"y,)H:, + h*(B"X< - B"y<)H; .  

(37) 

(38) 

The last terms in equations (37) and (38) may also be set to zero without affecting the converged 
solution, since H' is extremely small when the criterion of convergence is satisfied. The corrections 
for the contravariant velocity components can thus be rewritten as 

and 

U =  U* + B H ;  (39) 

v= v* + CH;, (40) 

and 

where 

and 

Since the condition of continuity must also be satisfied for the overall water depth, the water 
depth correction equation is obtained by substituting equations (39) and (40) into the continuity 
equation (27). Its final form is given by 

I,.. 

where 

and 

M H = ( J p h U * ~ ) , - ( J p h U * A v ) e + ( J p h V * A t ) , - ( J p h V * A C ) , .  (49) 

In equation (49), M H  is the local imbalance of mass resulting from the incorrect velocity field. 
When the value of M H  reaches zero, the water depth correcting procedure is completed. After 
correcting H', U' and V', one must recalculate the vertical velocity w at the interfaces according 
to the continuity equation (26). 

Since the non-staggered grid system is used in the model, the 2-A second-order difference 
scheme does not sense the pressure oscillation at the 1-A grids." The remedy is to relocate the 
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contravariant velocities at the grid surface, which are related to the local convective terms. From 
equations (21), (28) and (29) the contravariant velocities U at points P, E and at the control 
surface ‘e’ can be written as 

UP’DP + (BH, )P, (50) 

and 

where 

D = - y  ’‘ ( 1 A : u . + S ’ ) + s  ( 1 A:v,+Su (53) 
JAP n = E ,  W , N , S  n = E ,  W, N.S 

At the east control surface of each layer, the velocity U ,  may also be obtained by linear 
interpolation of Up and U , .  Its approximate form is given by U ,  as 

6e=fie+B”,(H,),. (54) 

ue = f i e  + g e  ~ ( ~ c ) e - ( f i < ) e ~ ,  

Substituting this equation into equation (52) yields 

(55) 

where 

For the estimated field, equation (55) is expressed as 

u: = 0: +Be [ ( E ? 5 * ) , - ( E ? f ) , ] .  (57) 

By this modification to the contravariant velocities in the source term of the water depth 
correction equation, the oscillations in the pressure field were found to be successfully suppressed. 

Based on the derived algebraic equations, a solution procedure similar to the usual SIMPLE 
approach is used to obtain convergent solutions. The convergent criteria is set at 1 x for the 
non-dimensional overall residual. 

4. MODEL VALIDATION 

Three test cases were used to validate the numerical model: (1) flow in a 180” channel bend, 
(2) flow near a groin and (3) flow in a straight open channel with the emphasis on computing the 
distribution of the energy dissipation rate to check the ability of turbulence modelling. These 
three cases are discussed in the following sections. 

Case I :  steadypow in a 180” channel bend 

In 1977, De VriendZ4 performed experiments at the Laboratory of Fluid Mechanics (LFM) in 
the Department of Civil Engineering, Delft University of Technology in Holland. The experi- 
mental channel was a 180” bend with a centreline radius of 4-25 m. The inlet and outlet of the 
bend were connected to straight reaches of 6 m long, and the channel width B was 1.7 m. The 
channel boundaries were smooth and a Chezy’s coefficient C of 57 rn1’’/s was reported, 
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One of the LFM’s experiments, having a discharge of 0.19 m3/s, with a depth of 018 m 
maintained by a weir at the downstream end of the flume, was simulated using the present model. 
The computations were performed with a six-multilayered (6 ML) model and a depth-averaged 
(DAV) k E model, both with the 80 x 40 automatically generated mesh system shown in Figure 3. 
Comparisons of the water surface elevations between the numerical predictions and LFM’s 
experimental data are presented in Figure 4. The longitudinal distance from the inlet is nor- 
malized by the length at centre of the bend and shown as S in the figure. The deviation of water 
surface from that at the downstream end of the bend is normalized by the tota1 depth at the 
channel outlet and denoted by H. The water deviations obtained from the LFM’s experiments are 
indicated by the symbols +, 0 and 0, which represent the values at the centre, at B/10 from the 
outer bank, and B/10 from the inner bank, respectively. The averaged water surface deviation 
H,,  for the whole channel bend is 0.05. 

values within the bend predicted by the depth-averaged k--E model do not 
agree with the experiments. At the centre and B/10 from the inner bank, the water surfaces are 
underestimated in the regions of S between 0.3 and 0.7. The largest and root mean square 
deviations between the measured and simulated values are 63.1 and 25.0% of 8, respectively. 
Attempts had been made to improve the DAV model by replacing the power-law scheme with the 
Quick schemez5 and by adding a local equilibrium modified term’ to the turbulence energy 
dissipation equation. The modifications did not significantly improve the results. The multi- 
layered model calculation shown in Figure 4(b), which takes the effect of the secondary flow 
motion into account, shows the improvements in the prediction of 8. The largest and root mean 
square deviations between the measured and simulated values have reduced to 37.3 and 18.4% 
of 8, respectively. The cross-sectional water surface elevation crossing and recrossing the 
centreline along the channel bend is observed in the regions of 0.75 I S I 0.85. The prediction of 
the depth-averaged model does not show this particular phenomena. It indicates that the first 
type secondary flow around the bend is important and should be considered. The present 6ML 
model is just enough to sense this 3 D  effect. Further inspections on the water surface have 
observed no oscillation and indicate that the water depth correction method can be used in the 
depth-averaged and the multi-layered turbulent flow models. 

In Figure 4(a), the 

Figure 3. Computational mesh (80 x 40) for 180 channel bend 
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Figure 4. Computed and observedz4 water surface elevations along channel bend: (a) DAV (b) 6ML. ~ 0 -B/lO; 
--centre; I+B/lO 

Case 2: steady $ow near a groin in a straight open channel 

Rajaratnam and Nwachukwu,26 R&N conducted a series of experiments on turbulent flows 
near a groin in a straight rectangular channel. The channel was 37 m long, 0.915 m wide and 
0.76m deep, with smooth boundary. The groin was located in the downstream half of the 
channel, and the water depth was kept constant with a weir at the downstream end of the channel. 

Comnutations were made for two tests. A1 and A2. The discharges for the two tests were 0.0432 
and 0.0449 m3/s, with depths at the downstream end of 0.189 and 0-223 m, respectively. The 
length of the groin for both cases was 0.152 m. A 80 x 40 grid system shown in Figure 5 was used 
for the computations. The computed non-dimensional depth-averaged velocity and bottom shear 
stress distributions are shown from Figures 6-8. In the figures, the non-dimensional velocities are 
given as U/U,, where U o  is the cross-sectional depth-averaged longitudinal velocity at the 
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Figure 5. Computational mesh (80x 40) for channel with groin located at x / b = O  

downstream end, x is the distance along the channel with the origin at the groin, y is the 
perpendicular distance from the bank and b is the length of the groin. 

For comparing, the data reported by Tingsanchali and Maheswaran’ (T&M) for the experi- 
ments A2 of R&N are indicated by the symbol 0. The calculated results of T&M, using 
a staggered depth-averaged model with corrections for the calculations, are also plotted. The 
corrections of T&M included: (i) a corner correction at the tip of the groin, (ii) the correction for 
the streamline curvature, LPS and (iii) the friction coefficient correction for the 3D effect. Symbol 
S2 represents the predictions of T&M by using the corner and LPS corrections, and symbol S3 
represents the results of T&M with all the three corrections. The present DAV and 6ML model 
calculations use the standard k--E model without any correction. 

The results of the 6ML and DAV models shown inFigure 6 indicate that they agree well with 
the A2 experiment at the section upstream of the groin, ( x s b s O ) ,  and are better than the 
predictions of T&M(S3) at the near-wall region. Just behind the groin, the flow is redeveloping, 
and all the calculations deviate from the A2 results. The 6ML and DAV models tend to 
underestimate, while T&M (S3) overpredict the near-wall reverse velocities. The largest error 
occurs at 0.5 I y/b I 1-0. Data of R&N show that the largest reverse velocities occur at y/b around 
0.5 at sections x / b  = 2,4 and 8, but both T&M and the 6ML models predict a maximum reverse 
velocity very close to the wall. 

The 3D structure of the flow near the groin can be seen from the velocity vectors at the bottom, 
second and fifth layers plotted in Figure 7(a)-(c). The plot for the bottom layer shows a region of 
strong reverse flow in front of the groin, I ,  which becomes weaker at the fifth layer. Depth- 
averaged vectors shown in Figure 7(d) also has a small recirculation region I, and the recircula- 
tion zone, 11, is smaller than that of the bottom layer. 

The bottom shear stress (zb)  distribution for experiment Al, with three groups of computed 
results, are compared in Figure 8. The bottom stress shear stress zbo is measured at 0-92 m 
upstream of the groin on the centreline of the channel. In the region upstream of the groin 
(x /b<0 ,  y /b> 1) where the 3D effect was not significant, the three computed results agree quite 
well the data of experiment Al. At the tip of the groin ( x / b  = O  and y/b = 1.0) the prediction of S3 is 
the best. In the region of y/b between 1.5 and 4.0 downstream of the groin, the 6ML model shows 
better predictions than S2 or S3 of T&M. 

According to the wall shear stress distribution, the reattachment length is also estimated. The 
predicted values for the 6ML and DAV are 11.5b and S-Ob, which are 8 and 36% less than 
the measurement of R&N, 12.5b. Since the 6ML model has taken the 3D effects into account for 
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Figure 6 .  Lateral velocity profiles in open channel (groin located at x / b  =O); 0 experiments;2s -. - 6ML; - - ~ DAV; 
-- S3. T&M9 
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Figure 9. Vertical distribution of energy dissipation rate in open channel: ~ present calculation; data of Nakagawa ef 
aL2’ 0 Kolmogoroff approach; + isotropy approach 

the velocity redevelopment and shear stress computation, Thus, it yields, without any correc- 
tion, the results as good as those predictions of the DAV models with empirical corrections. 

Case 3: turbulent energy dissipation rate in a straight channel 

Using the experimental data reported by Nakagawa et aLz7 for turbulent flow in a smooth 
straight open channel, the turbulence quantities were calculated using the present multilayer 
model. Since turbulent energy dissipation rate is an important parameter in the dynamics of 
turbulent flow and is a good check for the present model. The calculated energy dissipation rates 
are normalized and shown as a solid line in Figure 9. The data deduced from the Kolmogroff and 
isotropic approaches reported by Nakagawa et aE. are also plotted for comparison. In general, the 
calculated results are in good agreement with the data of using the Kolmogroff approach. An 
increasing in E near the free surface is also observed. Similar result had been reported by Baumart 
and Radach.” 

5. DISCUSSIONS 

Comparisons with experimental and other model results indicate that the present multilayer 
model is capable of simulating turbulent flow, both the mean flow and the turbulent quantities in 
an open channel. The use of a general co-ordinate and non-staggered grid system increases the 
ability of the present model in computing complex 3D flows. Also, the structure of the model is 
similar to that of a depth-averaged model, which means that a nested model can be easily 
constructed; to couple a 2D flow problem with local 3D refinement,4 for example. 

Although the present multilayer model has significantly improved the prediction of the 
recirculation region, it still underestimates the reattachment length. Whether this underestima- 
tion is the result of using the standard k-& turbulence model, as noted by the ASCE Task 
Committee,’ should be further tested. On the ther hand, the experimental data available for 
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turbulent open-channel flow validation, particularly the turbulent quantities near the solid 
boundary and free surface, are still lacking. It is thus needed to conduct more detailed 
measurements of the turbulent quantities using Laser Doppler Anemometer (LDA) so the 
turbulence model with free-surface effect can be further refined. 

6. CONCLUSIONS 

A multilayer model has been developed to simulate turbulent flow in an open channel with 
arbitrary boundary shapes. The grid pattern is non-staggered and is imposed on a general 
curvilinear co-ordinate system. 

Comparisons of the calculated results with experimental data in a straight channel show that 
the present multilayer formulation with the standard layer averaged k-E model sufficiently yields 
the good predictions both of the mean flow and turbulent quantities. The water depth correction 
scheme can be used to obtain the free-surface elevation, avoiding the rigid-lid assumptions, and 
eliminating the oscillation of the calculations due to the non-staggered grid arrangement. For 
strong recirculating flow, the multilayer model is shown to have improved the predictions 
significantly but still has its limitations. To improve the performance of the present model, the 
refinements of the turbulence model and the collection of more open-channel flow data for 
validation of the model are both required. 

APPENDIX: NOTATIONS: 

coefficients in finite difference equations 
coefficients for velocity correction 
width of flume 
length of groin 
coefficients for turbulence model 

friction coefficient 
production of turbulent kinetic energy 
gravitational acceleration 
metric tensor 
overall water depth 
non-dimensional water surface deviation 
water depth at layer 1 
correction for water depth 
Jacobian 
turbulent kinetic energy 
top layer 
source term of 4, physical plane 
source term of 4, computational plane 
contravariant velocity in computational plane 
velocities in physical domain 
vertical velocity at interface 
friction velocity at channel bed 
friction velocity at side walls 
non-dimensional velocity 
distance from the wall used by the wall function 
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elevation downward related to the free surface 
general variable 
von Karman constant 
diffusion coefficients 
turbulent kinetic energy dissipation rate 
general curvilinear co-ordinates 
effective viscosity 
molecular viscosity 
eddy viscosity 
fluid density 
overall bed shear stress 
bed shear stress 
wall shear stress 
bed shear stress in x direction 
bcd shear stress in y direction 
turbulent shear stress 
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